Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis.
نویسندگان
چکیده
The lateral ganglionic eminence (LGE) is known to give rise to striatal projection neurons as well as interneurons, which migrate in the rostral migratory stream (RMS) to populate the granule cell and glomerular layers of the olfactory bulb. Because all of these neuronal subtypes express Distalless-related (DLX) homeobox proteins during their differentiation, we set out to further characterize progenitors in the Dlx-positive domain of the LGE. Previous studies have shown that the LIM homeobox protein Islet1 (ISL1) marks the LGE subventricular zone (SVZ) and differentiating striatal projection neurons. However, ISL1 is not expressed in neurons of the developing olfactory bulb or the RMS. We show here that the dorsal-most portion of the Dlx-expressing region of the LGE SVZ lacks ISL1 cells. This dorsal domain, however, contains cells that express the ETS transcription factor Er81, which is also expressed in granule and periglomerular cells of the developing and adult olfactory bulb. Moreover, the adult SVZ and RMS contain numerous Er81-positive cells. Fate-mapping studies using Dlx5/6-cre transgenic mice demonstrate that Er81-positive cells in the granule cell and glomerular layers of the olfactory bulb derive from the Dlx-expressing SVZ region. These findings suggest that the LGE SVZ contains two distinct progenitor populations: a DLX(+);ISL1(+) population representing striatal progenitors and a DLX(+);Er81(+) population comprising olfactory bulb interneuron progenitors. In support of this, mice mutant for the homeobox genes Gsh2 and Gsh1/2, which show olfactory bulb defects, exhibit dramatically reduced numbers of Er81-positive cells in the LGE SVZ as well as in the olfactory bulb mantle.
منابع مشابه
Phenotypic and molecular identity of cells in the adult subventricular zone. in vivo and after expansion in vitro.
We have studied the molecular identity of adult mouse SVZ cells in situ, and after isolation and expansion as neurospheres in vitro. The gene and protein expression patterns of the adult cells have been compared to that of the cells from the lateral ganglionic eminence (LGE), their putative embryonic counterparts. The LGE gives rise to both striatal projection neurons and olfactory bulb interne...
متن کاملA role for Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice.
We have examined the role of the two closely related homeobox genes Gsh1 and Gsh2, in the development of the striatum and the olfactory bulb. These two genes are expressed in a partially overlapping pattern by ventricular zone progenitors of the ventral telencephalon. Gsh2 is expressed in both of the ganglionic eminences while Gsh1 is largely confined to the medial ganglionic eminence. Previous...
متن کاملThe Gsh2 homeodomain gene controls multiple aspects of telencephalic development.
Homeobox genes have recently been demonstrated to be important for the proper patterning of the mammalian telencephalon. One of these genes is Gsh2, whose expression in the forebrain is restricted to the ventral domain. In this study, we demonstrate that Gsh2 is a downstream target of sonic hedgehog and that lack of Gsh2 results in profound defects in telencephalic development. Gsh2 mutants hav...
متن کاملSubventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb.
We determined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic...
متن کاملDynamics of cell migration from the lateral ganglionic eminence in the rat.
From previous developmental studies, it has been proposed that the neurons of the ventrolateral cortex, including the primary olfactory cortex, differentiate from progenitor cells in the lateral ganglionic eminence. The objective of the present study was to test this hypothesis. The cells first generated in the forebrain of the rat migrate to the surface of the telencephalic vesicle by embryoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2003